martes, 10 de mayo de 2016

REDES


AÑO DE LA CONSOLIDACIÓN DEL MAR DE GRAU

INSTITUTO JUAN MEJÍA BACA

MANAYAY CÁRDENAS FLOR JANETH

PRIMER CICLO

TARDE

COMPUTACIÓN E INFORMÁTICA


CHICLAYO _  2016


1. CONTENIDO


DEFINICIÓN:
Una red es una estructura que dispone de un patrón que la caracteriza. La noción de informática, por su parte, hace referencia a los saberes de la ciencia que posibilitan el tratamiento de datos de manera automatizada a través de computadoras (ordenadores).
Con estos conceptos en claro, podemos comprender a qué se refiere la idea de red informática. Se trata del conjunto de equipos (computadoras, periféricos, etc.) que están interconectados y que comparten diversos recursos.
Este tipo de redes implica la interconexión de los equipos a través de ciertos dispositivos que permiten el envío y la recepción de ondas, las cuales llevan los datos que se desea compartir. En las redes informáticas, por lo tanto, hay emisores y receptores que intercambian mensajes.





BENEFICIOS:


  • Podemos compartir los periféricos caros, como pueden ser las impresoras. En una red, todos los ordenadores pueden acceder a la misma impresora.
  • Puede transferir datos entre los usuarios sin utilizar disquetes. La transferencia de archivos a través de la red elimina el tiempo que se pierde copiando archivos en disquete y luego en otro PC. Además, hay menos restricciones en el tamaño del archivo que se transfiere a través de la red.
  • Puede centralizar programas informáticos clave, como son los de finanzas y contabilidad. A menudo, los usuarios tienen que acceder al mismo programa para trabajar en él simultáneamente. Un ejemplo de lo anterior sería el sistema de una oficina de reservación de tickets, en el que es importante evitar que los tickets se vendan dos veces.
  • Se puede crear una copia de seguridad del archivo automáticamente. Se puede utilizar un programa informático para hacer copias de seguridad de archivos automáticamente, con lo que se ahorra tiempo y se garantiza que todo el trabajo ha quedado guardado.

CLASIFICACIÓN:

POR SU ALCANCE:

Red de área personal(PAN) 
Es una red de ordenadores usada para la comunicación entre los dispositivos de la computadora cerca de una persona..Esta red es utilizada entre ordenadores,impresoras,teléfonos móviles,infrarrojos y otros dispositivos en un área limitada(unos pocos metros) 

Red de área local(LAN) 
Es una red que se limita a un área especial relativamente pequeña como un cuarto,un edificio,un avión. Las redes de área local a veces se llaman una red de localización. 

Una red de área metropolitana(MAN) 
Son redes que cubren un ámbito geográfico limitado a una ciudad,se usa para unir sucursales de una empresa o banco.Suele ser utilizada por normas de conexión publicas y privadas. 

Las redes de área amplia(WAN) 
Son redes informáticas que se extienden sobre un área geográfica extensa utilizando medios como: satélites, cables interoceánicos, Internet, fibras ópticas públicas, etc.

POR SU TOPOLOGÍA:


  • RED EN BUS: Red cuya topología se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal o backbone) al cual se conectan los diferentes dispositivos. De esta forma todos los dispositivos comparten el mismo canal para comunicarse entre sí.
  • RED EN ANILLO: Red en la que cada estación está conectada a la siguiente y la última está conectada a la primera. Cada estación tiene un receptor y un transmisor que hace la función de repetidor, pasando la señal a la siguiente estación. La comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evitan eventuales pérdidas de información debidas a colisiones.En un anillo doble, dos anillos permiten que los datos se envíen en ambas direcciones. Esta configuración crea redundancia (tolerancia a fallos).

  • RED EN ESTRELLA: Red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste. Los dispositivos no están directamente conectados entre sí, además de que no se permite tanto tráfico de información. Dado su transmisión, una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco. Se utiliza sobre todo para redes locales. La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología. El nodo central en estas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes.
  • RED EN MALLA: Red en la que cada nodo está conectado a todos los nodos. De esta manera es posible llevar los mensajes de un nodo a otro por diferentes caminos. Si la red de malla está completamente conectada, no puede existir absolutamente ninguna interrupción en las comunicaciones. Cada servidor tiene sus propias conexiones con todos los demás servidores.




  • RED EN ÁRBOL: (también conocida como topología jerárquica) puede ser vista como una colección de redes en estrella ordenadas en una jerarquía. Éste árbol tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores. Al contrario que en las redes en estrella, la función del nodo central se puede distribuir. Los nodos individuales pueden quedar aislados de la red por un fallo puntual en la ruta de conexión del nodo. Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto. Para aliviar la cantidad de tráfico de red que se necesita para retransmitir todo a todos los nodos, se desarrollaron nodos centrales más avanzados que permiten mantener un listado de las identidades de los diferentes sistemas conectados a la red. Éstos switches de red “aprenderían” cómo es la estructura de la red transmitiendo paquetes de datos a todos los nodos y luego observando de dónde vienen los paquetes respuesta.
  • RED MIXTA: Se presenta cualquier combinación de las anteriores.


















POR SU MEDIO DE TRANSMISIÓN:



Un medio de transmisión es el canal que permite la transmisión de información entre dos terminales de un sistema de transmisión. La transmisión se realiza habitualmente empleando ondas electromagnéticas que se propagan a través del canal. A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío.
Dependiendo de la forma de conducir la señal a través del medio, los medios de transmisión se pueden clasificar en dos grandes grupos: medios de transmisión guiados y medios de transmisión no guiados. Según el sentido de la transmisión podemos encontrarnos con tres tipos diferentes: simplex, half-duplex y full-duplex.
MEDIOS DE TRANSMISIÓN GUIADOS
Los medios de transmisión guiados están constituidos por un cable que se encarga de la conducción (o guiado) de las señales desde un extremo al otro. Las principales características de los medios guiados son el tipo de conductor utilizado, la velocidad máxima de transmisión, las distancias máximas que puede ofrecer entre repetidores, la inmunidad frente a interferencias electromagnéticas, la facilidad de instalación y la capacidad de soportar diferentes tecnologías de nivel de enlace.
La velocidad de transmisión depende directamente de la distancia entre los terminales, y de si el medio se utiliza para realizar un enlace punto a punto o un enlace multipunto. Debido a esto los diferentes medios de transmisión tendrán diferentes velocidades de conexión que se adaptarán a utilizaciones dispares.
Dentro de los medios de transmisión guiados, los más utilizados en el campo de las comunicaciones y la interconexión de ordenadores son:
v  El par trenzado
v  El cable coaxial
v  La fibra óptica.

El par trenzado y el cable coaxial usan conductores metálicos que transportan señales de corriente eléctrica. La fibra óptica es un cable de cristal o plástico que acepta y transporta señales en forma de luz.





Consiste en un par de hilos de cobre conductores cruzados entre sí, con el objetivo de reducir el ruido de diafonía. A mayor número de cruces por unidad de longitud, mejor comportamiento ante el problema de diafonía. Existen dos tipos de par trenzado: sin blindaje y blindado.

Cable de par trenzado sin blindaje (UTP)
El cable de par trenzado sin blindaje (UTP, Unshieled Twisted Pair) es el tipo más frecuente de medio de comunicación. Está formado por dos conductores, habitualmente de cobre, cada uno con su aislamiento de plástico de color, el aislamiento tiene un color asignado para su identificación, tanto para identificar los hilos específicos de un cable como para indicar qué cables pertenecen a un par dentro de un manojo.


Las aplicaciones principales en las que se hace uso de cables de par trenzado son:
   Ø   Bucle de abonado: es el último tramo de cable existente entre el teléfono de un abonado y la central a la que se encuentra conectado. Este cable suele ser UTP Cat.3 y en la actualidad es uno de los medios más utilizados para transporte de banda ancha, debido a que es una infraestructura que esta implantada en el 100% de las ciudades.
   Ø   Redes LAN: en este caso se emplea UTP Cat.5 o Cat.6 para transmisión de datos, consiguiendo velocidades de varios centenares de Mbps. Un ejemplo de este uso lo constituyen las redes 10/100/1000BASE-T.
La EIA ha desarrollado estándares para graduar los cables UTP según su calidad

Conectores UTP. Los cables UTP se conectan habitualmente a los dispositivos de red a través de un tipo de conector y un tipo de enchufe. Uno de los estándares más utilizados es el RJ 45 de 8 conductores.

 Cable de par trenzado blindado (STP)
El cable de par trenzado blindado (STP, Shieled Twister Pair) tiene una funda de metal o un recubrimiento de malla entrelazada que rodea cada par de conductores aislados. Esa carcasa de metal evita que penetre el ruido electromagnético y elimina un fenómeno denominado interferencia, que es el efecto indeseado de un canal sobre otro canal. El STP tiene las mismas consideraciones de calidad y usa los mismos conectores que el UTP, pero es necesario conectar el blindaje a tierra.

Cable coaxial.
El cable coaxial transporta señales con rango de frecuencias más altos que los cables de  pares trenzados. El cable coaxial tiene un núcleo conductor central formado por un hilo sólido o enfilado, habitualmente de cobre, recubierto por un aislante e material dieléctrico que, a su vez, está recubierto de una hoja exterior de metal conductor, malla o una combinación de ambos, también habitualmente de cobre. La cubierta metálica exterior sirve como blindaje contra el ruido y como un segundo conductor. Este conductor está recubierto por un escudo
aislante, y todo el cable por una cubierta de plástico.


Los cables coaxiales se conectan a los dispositivos utilizando conectores específicos. Unos pocos de los más empleados se han convertido en estándares, siendo el más frecuente el conector de barril o a bayoneta BNC.
Los cables coaxiales para redes de datos usan frecuentemente conectores en T y terminadores. El terminador es necesario en las topologías de bus donde hay un cable principal que actúa de troncal con ramas a varios dispositivos pero que en si misma no termina en un dispositivo, si el cable principal se deja sin terminar, cualquier señal que se transmita sobre él generará un eco que rebota hacia atrás e interfiere con la señal original. El terminador absorbe la onda al final del cable y elimina el eco de vuelta.



Fibra Óptica
La fibra óptica está hecha de plástico o cristal y transmite las señales en forma de luz.

La fibra óptica utiliza la reflexión para transmitir la luz a través del canal. Un núcleo de cristal o
plástico se rodea de una cobertura de cristal o plástico menos denso, la diferencia de
densidades debe ser tal que el rayo se mueve por el núcleo reflejado por la cubierta y no
refractado en ella.
Modos de propagación.

La propagación de la luz por el cable puede tomar dos modos: multimodo y monomodo, y la primera se puede implementar de dos maneras: índice escalonado o de índice de gradiente gradual.
Multimodo. El modo multimodo se denomina así porque hay múltiples rayos de luz de una fuente luminosa que se mueven a través del núcleo por caminos distintos. Cómo se mueven estos rayos dentro del cable depende de la estructura del núcleo.
En la fibra multimodo de índice escalonado, la densidad del núcleo permanece constante desde el centro hasta los bordes, el rayo de luz se mueve a través de esta densidad constante en línea recta hasta que alcanza la interfaz del núcleo y la cubierta, en esa interfaz hay un cambio abrupto a una densidad más baja que altera el ángulo de movimiento del rayo. El término escalonado se refiere a la rapidez de este cambio.
La señal consiste en un haz de rayos que recorren diversos caminos, reflejándose de formas diversas e incluso perdiéndose en la cubierta. En el destino los distintos rayos de luz se recombinan en el receptor, por lo que la señal queda distorsionada por la pérdida de luz. Esta distorsión limita la tasa de datos disponibles.
La fibra multimodo de índice gradual, decrementa la distorsión de la señal a través del cable, la densidad del núcleo es variable, mayor en el centro y decrece gradualmente hacia el borde. La señal se introduce en el centro del núcleo, a partir de este punto, sólo el rayo horizontal se mueve en línea recta a través de la zona central. Los rayos en otras direcciones se mueven a través de la diferencia de densidad, con el cambio de densidad, el rayo de luz se refracta formando una curva, los rayos se intersectan en intervalos regulares, por lo que el receptor puede reconstruir la señal con mayor precisión.

Monomodo. El monomodo usa fibra de índice escalonado y una fuente de luz muy enfocada que limita los ángulos a un rango muy pequeño. La fibra monomodo se fabrica con un diámetro mucho más pequeño que las fibras multimodo y con una densidad sustancialmente menor. La propagación de los distintos rayos es casi idéntica y los retrasos son casi despreciables, todos los rayos llegan al destino juntos, y se recombinan sin distorsión de la señal.
Tamaño de la fibra y composición del cable.
Las fibras ópticas se definen por la relación entre el diámetro de su núcleo y el diámetro de su cubierta, expresadas en micras. 

Fuentes de luz para cables ópticos.

La señal por la fibra óptica es transportada por un rayo de luz, para que haya transmisión, el emisor debe contar con una fuente de luz, y el receptor con una célula fotosensible. El receptor más usual es un fotodiodo, dispositivo que transforma la luz recibida en corriente eléctrica, mientras que para la emisión se usa un diodo LED o un diodo láser, siendo el primero más barato pero que produce una luz desenfocada y con un rango de ángulos muy elevado.

Conectores para fibra óptica.

Los conectores para el cable de fibra óptica deben ser tan precisos como el cable en si mismo, cualquier desalineación da como resultado que la señal se refleje hacia el emisor, y cualquier diferencia en el tamaño produce un cambio en el ángulo de la señal. Además la conexión debe completarse aunque las fibras no estén completamente unidas, pues un intervalo entre dos núcleos da como resultado una señal disipada, y una conexión demasiado presionada comprime ambos núcleos y altera el ángulo de reflexión. Los fabricantes han desarrollado varios conectores precisos y fáciles de utilizar, con forma de barril y en versiones de macho y hembra, teniendo el cable un conector macho y el dispositivo el conector hembra.
Las ventajas de la fibra óptica son: Inmunidad al ruido, menor atenuación de la señal y ancho de banda mayor. Y las desventajas: el coste, la fragilidad y la instalación y el mantenimiento.

MEDIOS DE TRANSMISIÓN NO GUIADOS

Los medios no guiados o comunicación sin cable transportan ondas electromagnéticas sin usar un conductor físico, sino que se radian a través del aire, por lo que están disponibles para cualquiera que tenga un dispositivo capaz de aceptarlas. 
En este tipo de medios tanto la transmisión como la recepción de información se lleva a cabo mediante antenas. A la hora de transmitir, la antena irradia energía electromagnética en el medio. Por el contrario, en la recepción la antena capta las ondas electromagnéticas del medio que la rodea.
La configuración para las transmisiones no guiadas puede ser direccional y omnidireccional. En la direccional, la antena transmisora emite la energía electromagnética concentrándola en un haz, por lo que las antenas emisora y receptora deben estar alineadas. En la omnidireccional, la radiación se hace de manera dispersa, emitiendo en todas direcciones, pudiendo la señal ser recibida por varias antenas. Generalmente, cuanto mayor es la frecuencia de la señal transmitida es más factible confinar la energía en un haz direccional.
La transmisión de datos a través de medios no guiados añade problemas adicionales, provocados por la reflexión que sufre la señal en los distintos obstáculos existentes en el medio. Resultando más importante el espectro de frecuencias de la señal transmitida que el propio medio de transmisión en sí mismo.
Según el rango de frecuencias de trabajo, las transmisiones no guiadas se pueden clasificar en tres tipos: radio, microondas y luz (infrarrojos/láser).
Conceptos relacionados con las transmisiones de

Radio.
Propagación. Las ondas de radio utilizan cinco tipo de propagación: superficie, troposférica, ionosférica, línea de visión y espacio. Cada una de ellas se diferencia por la forma en que las ondas del emisor llegan al receptor, siguiendo la curvatura de la tierra (superficie), reflejo en la
troposfera (troposférica), reflejo en la ionosfera (ionosférica), viéndose una antena a otra (línea
de visión) o siendo retransmitidas por satélite (espacio). Cada banda es susceptible de uno u
otro tipo de propagación:
·       Repetidores: para aumentar la distancia útil de las microondas terrestres, el repetidor radia la señal regenerada a la frecuencia original o a una nueva frecuencia. Las microondas forman la base de los sistemas de telefonía.
·         Antenas: para la transmisión y recepción de las señales de radio se utilizan distintos tipos de antenas: dipolos, parabólicas, de cornete.
·         Comunicación vía satélite: utiliza microondas de emisión directa y repetidores por satélite.
·     Telefonía celular. Para conexiones entre dispositivos móviles. Divide cada área en zonas o células, que contienen una antena y una central controlada por una central de conmutacion. La telefonía celular usa modulación en frecuencia.

Microondas, en un sistema de microondas se usa el espacio aéreo como medio físico de transmisión. La información se transmite en forma digital a través de ondas de radio de muy corta longitud (unos pocos centímetros). Pueden direccionarse múltiples canales a múltiples estaciones dentro de un enlace dado, o pueden establecer enlaces punto a punto. Las estaciones consisten en una antena tipo plato y de circuitos que interconectan la antena con la terminal del usuario.

Los sistemas de microondas terrestres han abierto una puerta a los problemas de transmisión de datos, sin importar cuales sean, aunque sus aplicaciones no estén restringidas a este campo solamente. Las microondas están definidas como un tipo de onda electromagnética situada en el intervalo del milímetro al metro y cuya propagación puede efectuarse por el interior de tubos metálicos. Es en si una onda de corta longitud.

Tiene como características que su ancho de banda varia entre 300 a 3.000 Mhz, aunque con algunos canales de banda superior, entre 3´5 Ghz y 26 Ghz. Es usado como enlace entre una empresa y un centro que funcione como centro de conmutación del operador, o como un enlace entre redes Lan.
Para la comunicación de microondas terrestres se deben usar antenas parabólicas, las cuales deben estar alineadas o tener visión directa entre ellas, además entre mayor sea la altura mayor el alcance, sus problemas se dan perdidas de datos por atenuación e interferencias, es muy sensible a las malas condiciones atmosféricas. 
Microondas terrestres: Suelen utilizarse antenas parabólicas. Para conexionas a larga distancia, se utilizan conexiones intermedias punto a punto entre antenas parabólicas.
Se suelen utilizar en sustitución del cable coaxial o las fibras ópticas ya que se necesitan menos repetidores y amplificadores, aunque se necesitan antenas alineadas. Se usan para transmisión de televisión y voz.
La principal causa de pérdidas es la atenuación debido a que las pérdidas aumentan con el cuadrado de la distancia (con cable coaxial y par trenzado son logarítmicas). La atenuación aumenta con las lluvias.
Las interferencias es otro inconveniente de las microondas ya que al proliferar estos sistemas, pude haber más solapamientos de señales.
Microondas por satélite: El satélite recibe las señales y las amplifica o retransmite en la dirección adecuada .Para mantener la alineación del satélite con los receptores y emisores de la tierra, el satélite debe ser geoestacionario.
Se suele utilizar este sistema para:
·         Difusión de televisión.
·         Transmisión telefónica a larga distancia.
·         Redes privadas.

El rango de frecuencias para la recepción del satélite debe ser diferente del rango al que este emite, para que no haya interferencias entre las señales que ascienden y las que descienden.
Debido a que la señal tarda un pequeño intervalo de tiempo desde que sale del emisor en la Tierra hasta que es devuelta al receptor o receptores, ha de tenerse cuidado con el control de errores y de flujo de la señal.
Las diferencias entre las ondas de radio y las microondas son:
·         Las microondas son unidireccionales y las ondas de radio omnidireccionales.
·         Las microondas son más sensibles a la atenuación producida por la lluvia.
·         En las ondas de radio, al poder reflejarse estas ondas en el mar u otros objetos, pueden aparecer múltiples señales "hermanas".

    MEDIO DE TRANSMISIÓN SEGÚN SU SENTIDO
ü  Simplex
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente. Con esta fórmula es difícil la corrección de errores causados por deficiencias de línea (por ejemplo, la señal de TV).
ü  Half-duplex
En este modo la transmisión fluye en los dos sentidos, pero no simultánemnete, solo una de las dos estaciones del enlace punto a punto puede transmitir. Este método también se denomina en dos sentidos alternos (p. ej., el walkie-talkie).
ü  Full-duplex
Es el método de comunicación más aconsejable puesto que en todo momento la comunicación puede ser en dos sentidos posibles, es decir, que las dos estaciones simultáneamente pueden enviar y recibir datos y así pueden corregir los errores de manera instantánea y permanente.

    POR SU FUNCIÓN:


  • Red Comercial: Proporciona soporte e información para una empresa u organización con ánimo de lucro; esto quiere decir que es la que se utiliza en empresas ya sea para un uso externo e internode la empresa como en las secretarias y demás parte de la misma; así es la Red de uso Comercial.
  •  Red Educativa: Proporciona soporte e información para una organización educativa dentro del ámbito del aprendizaje; así esta información proporcionada ya sea en escuelas primarias y secundarias como en universidades son utilizadas para un aprendizaje mucho mas extenso en el ámbito del estudiante.
  •  Red para el Proceso de Datos: Proporciona una interfaz para intercomunicar equipos que vayan a realizar una función de cómputo conjunta; esto quiere decir que esta información puede ser proporcionada a cualquier equipo ya sea desde computadoras de escritorios hasta laptops, pues solo necesita tener una función conjunta para distribuir una información.
 
    2. RESUMEN 

Una red de computadoras, también llamada red de ordenadores o red informática, es un conjunto de equipos informáticos conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricosondas electromagnéticas o cualquier otro medio para el transporte de datos con la finalidad de compartir información y recursos. Este término también engloba aquellos medios técnicos que permiten compartir la información.


     3. SUMMARY



     4. RECOMENDACIONES



  • Es necesario que el estudiante o practicante, sepa a fondo el tema de las conexiones de redes, debido a que si se realiza una conexión de datos incorrecta a ningún momento se va a poder establecer contacto entre las mismas, causando una pérdida de tiempo, dinero, etc.
  • Tanto el emulador como la simulación de la red deben estar bien instalados, configurados, además de digitar bien los comandos, para que se ejecuten correctamente, cumplan las funciones programadas, de esta manera la red rendirá y cumplirá cada paso de la programación correspondiente sin ningún problema.
5. CONCLUSIONES


  • Es necesario que el estudiante o practicante, sepa a fondo el tema de las conexiones de redes, debido a que si se realiza una conexión de datos incorrecta a ningún momento se va a poder establecer contacto entre las mismas, causando una pérdida de tiempo, dinero, etc.  

  • Tanto el emulador como la simulación de la red deben estar bien instalados, configurados, además de digitar bien los comandos, para que se ejecuten correctamente, cumplan las funciones programadas, de esta manera la red rendirá y cumplirá cada paso de la programación correspondiente sin ningún problema.
    6. APRECIACIÓN DEL EQUIPO
La Red (también llamada red de ordenadores red informática) es un conjunto de computadoras y/o dispositivos conectados por enlaces de un medio físico y que comparten información.

  7. APRECIACIÓN DE TÉRMINOS

1. LAN
Una Red de Área Local o LAN es una red de ordenadores o cualquier otro dispositivo (móviles, tablets, pc portátil) que se limitan a un área "pequeña", como a una casa, una escuela u oficina de trabajo.

2. ISP
Término usado para referirnos a nuestro proveedor de servicio de Internet. Son esas empresas a quienes le pagamos mensualmente una tarifa por darnos el Internet nuestro de cada día :). Ejemplos: Movistar, ONO, Claro, Vodafone, etc (según tu país).

3. WAN
Una red de área amplia es una red que cubre un área más extensa. Tu ISP te proporciona una conexión con su propia WAN, lo cual te permite conectarte a Internet.

4. Dirección IP
Un dirección de protocolo de Internet es una dirección numérica que corresponde a tu equipo dentro de una red local o WAN. Todo equipo requiere una dirección IP para poder conectarse a Internet. Se compone de un grupo de cuatro números en el rango de 0 a 255 separados por puntos. Eje: 192.168.100.1 ó 213.24.90.80.
Para no complicarte puedes definirlo de la siguiente manera: "la IP es el número identificador de mi equipo dentro de una conexión de red"

5. Router
Un router es un dispositivo físico que se encarga de enviar y recibir el tráfico de Internet. Es el puente de conexión entre tu PC e Internet. Es el aparato que nuestro ISP instala en casa. 
Fabricantes de router: hay muchos, estos son sólo algunos: D-Link, Netgear, ARRIS, Comtrend, Cisco, etc, etc.

6. Puerta de Enlace

Es un dispositivo que enruta el tráfico entre redes. Este término lo encontrarás con mucha frecuencia y suele relacionarse al router, al cual se le conoce también como Puerta de Enlace Predeterminada a la hora de realizar alguna configuración en él. 













https://www.youtube.com/watch?v=3VIkSnDvctQ http://definicion.de/red-informatica/
http://www.netsolutions.com.mx/servicios/redes/beneficios/beneficios.shtml
http://www.taringa.net/post/info/15321302/Clasificacion-de-Redes-Informaticas-por-alcance.html
http://herratlmaticas.blogspot.pe/2011/03/tipologia-de-redes.html
http://socializandoredes.blogspot.pe/2012/11/medios-de-transmision-de-datos.html
http://es.slideshare.net/wwwbotakevin/clasificacin-de-red-por-servicio-funcin
http://majo-flores.blogspot.pe/2011/08/resumen-redes-de-computadoras.html
http://redlanciscopackettracer.webnode.es/conclusiones-y-recomendaciones/






1 comentario:

  1. Un tema muy exquisito para investigar. Gracias por su aporte. Saludos

    ResponderEliminar